Abstract

Eight glacial lakes of the Bohemian Forest (Czech Republic and Germany) were characterised by the distribution of chironomids collected as pupal exuviae. Twenty-eight taxa were identified, including some faunistically interesting species of the region. Two-way indicator species analysis (TWINSPAN) was used to classify lakes according to their taxonomic composition. Canonical correspondence analysis (CCA) and multiple regression were used to relate the chironomid assemblages to two sets of explanatory variables: (i) local environmental variables, and (ii) broad-scale spatial variables. The TWINSPAN classified the lakes into four groups, whereas presence/absence of three taxa was indicative for this classification. The CCA of assemblage composition on environmental variables showed that chironomids respond significantly to altitude and alkalinity. The ordination of composition data on geographical variables revealed strong longitudinal gradient in chironomid distributions. Altitude and alkalinity accounted for 36.2% of the total variation, while the geographic gradient explained 20.5%. As revealed by the variation partitioning procedure, the significant effect of these variables was, in large part, independent of each other. Overall taxonomic richness appeared to be governed by altitude only. Causal ecological and historical factors underlying these results are discussed. This paper may provide a basis for hypothesis testing in future research of the Bohemian Forest lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call