Abstract

In this study, TiO 2-based coatings containing Ca and P ions were prepared on titanium alloy surfaces by microarc oxidation (MAO). After soaking in aqueous NaOH solution and subsequent heat treatment at 700 and 800 °C, calcium titanate/titania bioceramic composite (CTBC) coatings were obtained. The results show that the outer layers (0–1.5 μm) of the CTBC coatings are mainly composed of Ca, Ti, O and Na constituents with a uniform distributions with increasing the depth near the surfaces. The surface phase compositions of the CTBC coating formed at 700 °C are anatase, rutile and CaTi 21O 38 phases, as well as a few CaTiO 3, while those of the CTBC coating formed at 800 °C are anatase, rutile and CaTiO 3. When incubated in a simulated body fluid (SBF), apatite was deposited on the CTBC coatings probably via formation of hydroxyl functionalized surface complexes on the CTBC coating surfaces by ionic exchanges between (Ca 2+, Na +) ions of the CTBC coatings and H 3O + ions in the SBF. The CTBC coating formed at 800 °C seems to facilitate the deposition of Ca and P probably due to the good crystallographic match between perovskite CaTiO 3 and HA on specific crystal planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.