Abstract
Calcinaksite, KNa[Ca(H2O)][Si4Ol0], a new natural member of the litidionite group, was found in a calcic xenolith from alkaline basalt of the Bellerberg volcano, Eastern Eifel region, Rhineland-Palatinate, Germany. The crystal structure has been studied based on single-crystal X-ray diffraction data. Triclinic unit-cell parameters are: a = 7.021 (2), b = 8.250 (3), c = 10.145 (2) Å, α = 102.23 (2), β = 100.34 (2), γ = 115.09 (3)°, space group P1. The structure model was determined by the `charge-flipping' method and refined to R = 0.0527 in anisotropic approximation using 3057 I > 3σ(I). Calcinaksite is a hydrous calcium-dominant litidionite-group mineral. The crystal structure of calcinaksite (like other litidionite-group minerals and related compounds) is based on a heteropolyhedral framework and is characterized by the presence of several types of channels. Calcium forms distorted CaO5Ø (Ø = H2O) octahedra while Na forms NaO5 square pyramids. Nine-coordinated K atoms are located in a channel extending along [010]. Water molecules occupy a channel running along the [100] direction and are characterized by a rather high equivalent isotropic displacement parameter of 0.053 (2) Å(2). In calcinaksite, there are three short distances between the water molecule and oxygen atoms, Ow...O3 [2.844 (5) Å], Ow...O9 [2.736 (4) Å] and Ow...Ow [2.843 (7) Å]. These distances correspond to three hydrogen bonds detected by IR data (the bands at 3340, 3170 and 3540 cm(-1)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica Section B, Structural science, crystal engineering and materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.