Abstract

The stability of biogenic uraninite with respect to oxidation is seminal to the success of in situ bioreduction strategies for remediation of subsurface U(VI) contamination. The properties and hence stability of uraninite are dependent on its size, structure, and composition. In this study, the local-, intermediate-, and long-range molecular-scale structure of nanoscale uraninite produced by Shewanella oneidensis strain MR-1 was investigated using EXAFS, SR-based powder diffraction and TEM. The uraninite products were found to be structurally homologous with stoichiometric U02 under all conditions considered. Significantly, there was no evidence for lattice strain of the biogenic uraninite nanoparticles. The fresh nanoparticles were found to exhibit a well-ordered interior core of diameter ca. 1.3 nm and an outer region of thickness ca approximately 0.6 nm in which the structure is locally distorted. The lack of nanoparticle strain and structural homology with stoichiometric U02 suggests that established thermodynamic parameters for the latter material are an appropriate starting point to model the behavior of nanobiogenic uraninite. The detailed structural analysis in this study provides an essential foundation for subsequent investigations of environmental samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.