Abstract

We study a two-parameter family of one-dimensional maps and related $(a,b)$-continued fractions suggested for consideration by Don Zagier. We prove that the associated natural extension maps have attractors with finite rectangular structure for the entire parameter set except for a Cantor-like set of one-dimensional Lebesgue zero measure that we completely describe. We show that the structure of these attractors can be "computed'' from the data $(a,b)$, and that for a dense open set of parameters the Reduction theory conjecture holds, <em>i.e.</em>, every point is mapped to the attractor after finitely many iterations. We also show how this theory can be applied to the study of invariant measures and ergodic properties of the associated Gauss-like maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.