Abstract

ABSTRACT Arabidopsis thaliana aminohydrolase (AtADAL) has been shown to be involved in the metabolism of N6-methyl-AMP, a proposed intermediate during m6A-modified RNA metabolism, which can be subsequently incorporated into newly synthesized RNA by Pol II. It has been proposed that AtADAL will prevent N6-methyl-AMP reuse and catabolize it to inosine monophosphate (IMP). Here, we have solved the crystal structures of AtADAL in the apo form and in complex with GMP and IMP in the presence of Zn2+. We have identified the substrate-binding pocket of AtADAL and compared it with that for adenosine deaminase (ADA), adenine deaminase (ADE) and AMP deaminase (AMPD) from multiple species. The comparisons reveal that plant ADAL1 may have the potential ability to catalyze different alkyl-group substituted substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.