Abstract

BackgroundMetabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics.ResultsThe structure of Arabidopsis thaliana MTR kinase co-crystallized with ATPγS and MTR has been determined at 1.9 Å resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATPγS analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR.ConclusionThe structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.

Highlights

  • Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria

  • Overall fold of MTR kinase The structure of Arabidopsis thaliana MTR kinase has two lobes: a smaller N-lobe and a larger C-lobe connected by a linker region (Fig. 1 and 2a)

  • The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with MTR

Read more

Summary

Introduction

Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. BMC Structural Biology 2007, 7:70 http://www.biomedcentral.com/1472-6807/7/70 potent inhibitor of all SAM-dependent methyltransferases [2], MTA inhibits spermine synthase [3] in polyamine biosynthesis, and 1-aminocyclopropane-1-carboxylic acid synthase [4] in ethylene biosynthesis. Both polyamine and ethylene are important in plant development, growth, stress response and survival [5,6,7]. To promptly remove the toxic by-product MTA and to ensure sufficient supply of methionine and SAM, a methionine salvage pathway that recycles the methylthio moiety of MTA to methionine has evolved in almost all organisms In plants, this pathway is known as the Yang cycle [8]. This acireductone is subsequently converted to 2-keto-4-methylthiobutyrate and transaminated to methionine [8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call