Abstract
Bacteria possess proteases that are specific for the peptide bonds between D-alanine residues, one of which has a free α-carboxyl group. These D-alanyl-D-alanine peptidases catalyse carboxypeptidation and transpeptidation reactions involved in bacterial cell wall metabolism1,2, and are inactivated by β-lactam antibiotics. We have now elucidated the structure, at 2.5 A resolution, of the penicillin-resistant Zn2+-containing D-alanyl-D-alanine peptidase of Streptomyces albus (Zn2+ G peptidase)3,4. The enzyme is shown to consist of two globular domains, connected by a single link. The N-terminal domain has three α-helices, and the C-terminal domain has three α-helices and five β-strands. The Zn2+ ion is ligated by three histidine residues, and located in a cleft in the C-terminal domain. The mechanism of action of the enzyme may be related to that of other carboxypeptidases, which also contain functional Zn2+ ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.