Abstract

Abstract A three-dimensional, 11-level, primitive equation model has been constructed for a simulation study of tropical cyclones. The model has four levels in the boundary layer and its 70×70 variable grid mesh encloses a 4000-km square domain with a 20-km resolution near the center. Details of the model, including the parameterization scheme for the subgrid-scale diffusion and convection processes, are described. A weak vortex in the conditionally unstable tropical atmosphere is given as the initial state for a numerical integration from which a tropical cyclone develops in the model. During the integration period of one week, the sea surface temperature is fixed at 302K. The central surface pressure drops to about 940 mb, while a warm moist core is established. The azimuthal component of mean horizontal wind is maximum at about 60 km from the center at all levels. A strong in-flow is observed in the boundary layer. At upper levels, a secondary radial-vertical circulation develops in and around the regi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.