Abstract

A T = 1 empty aggregate of alfalfa mosaic virus coat protein had been crystallized in a hexagonal unit cell and its orientation was determined with the rotation function. A single heavy-atom derivative has now been prepared and the position of the two Hg atoms per protein subunit were determined using a systematic Patterson search procedure, given the particle orientation. Phases, initially determined by single isomorphous replacement, were refined by six cycles of electron density averaging and solvent leveling to produce a 4.5 A resolution electron density map. The protein coat is confined between 95 and 58 A radius. The subunit boundary could be delineated easily. It has a central cavity reminiscent of the beta-barrel in other spherical plant viruses, but its topology could not be determined unambiguously. The spherical particle has large holes at the 5-fold axes, consistent with previous observations. The subunits have substantial interactions at the 2 and 3-fold axes. The structure of the elongated particles is discussed in relation to these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.