Abstract
The unsteady velocity field generated by an underexpanded jet has been investigated using stereoscopic particle image velocimetry (PIV). A 4:1 aspect ratio converging–diverging rectangular nozzle designed to operate at a fully expanded condition of was used. The nozzle was operated at off-design conditions to generate imperfectly expanded jets with intense screech tones. Phase-locked PIV measurements show the spatial and temporal evolution of the three-dimensional jet with high fidelity. In addition to the globally averaged mean and turbulence velocity field data, the phase-averaged data for the velocity and vorticity fields were also obtained. The turbulence quantities were resolved into contributions from the periodic and random motions. The deformation of the periodic spanwise structures results in the formation of strong streamwise vortices that appear to govern the mixing of the jet. It is shown that the presence of coherent vorticity of significant strength, in addition to the shock cell strength, is largely responsible for determining the screech intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.