Abstract
A synthetic gene encoding the fusion protein (Ala-Hyp)(51)-enhanced green fluorescent protein expressed in Nicotiana tabacum cells produced a fusion glycoprotein with all proline residues hydroxylated and substituted with an arabinogalactan polysaccharide. Alkaline hydrolysis of the fusion glycoprotein yielded a population of hydroxyproline (Hyp)-arabinogalactan polysaccharides ranging in size from 13 to 26 saccharide residues/Hyp, with a median size of 15-17 residues. We isolated a 15-residue Hyp-arabinogalactan for structure determination by sugar analyses and one- and two-dimensional nuclear magnetic resonance techniques that provided the assignment of proton and carbon signals of a small polysaccharide O-linked to the hydroxyl group of Hyp. The polysaccharide consisted of a 1,3-linked beta-D-Galp backbone with a single 1,6-linked beta-D-Galp "kink." The backbone had two side chains of Galp substituted at position 3 with an arabinose di- or trisaccharide and at position 6 with glucuronic acid or rhamnosyl glucuronic acid. Energy-minimized space-filling molecular models showed hydrogen bonding within polysaccharides attached to repetitive Ala-Hyp and also between polysaccharides and the peptide backbone. Polysaccharides distorted the peptide Ramachandran angles consistent with the circular dichroic spectra of isolated (Ala-Hyp)(51) and its reversion to a polyproline II-like helix after deglycosylation. This first complete structure of a Hyp-arabinogalactan polysaccharide shows that computer-based molecular modeling of Hyp-rich glycoproteins is now feasible and supports the suggestion that small repetitive subunits comprise larger arabinogalactan polysaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.