Abstract

The aggregation of a hydrophilic-hydrophobic diblock copolymer consisting of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(methyl methacrylate) (PMMA) in aqueous solution has been investigated by small-angle neutron scattering. This polybase is extensively protonated at low pH and forms micelles with a dense core of PMMA and a diffuse coronal layer of cationic PDMAEMA. Addition of salt induced micellar growth, brought about by charge screening and more efficient packing of the chains. As a result, the aggregation number increased from 8 up to 31. A similar effect was observed at low concentrations of an anionic surfactant, sodium dodecyl sulfate (SDS) since the net cationic charge in the hydrophilic coronal layer was reduced due to surfactant binding. However, at higher surfactant concentrations, a drastic structural reorganization occurred, as the PMMA became solubilized into the SDS micellar cores and the PDMAEMA chains interacted with the surfactant micelles, resulting in a "pearl-necklace" structure. The presence of the cationic polyelectrolyte significantly increased the population of SDS micelles by effectively lowering the critical micelle concentration of this anionic surfactant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.