Abstract
The internal ribosome entry site (IRES) in the hepatitis C virus (HCV) RNA genome is essential for the initiation of viral protein synthesis. IRES domains adopt well-defined folds that are potential targets for antiviral translation inhibitors. We have determined the three-dimensional structure of the IRES subdomain IIa in complex with a benzimidazole translation inhibitor at 2.2Å resolution. Comparison to the structure of the unbound RNA in conjunction with studies of inhibitor binding to the target in solution demonstrate that the RNA undergoes a dramatic ligand-induced conformational adaptation to form a deep pocket that resembles the substrate binding sites in riboswitches. The presence of a well-defined ligand-binding pocket within the highly conserved IRES subdomain IIa holds promise for the development of unique anti-HCV drugs with a high barrier to resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.