Abstract

The non-self-complementary DNA decamer C-A-A-A-G-A-A-A-A-G/C-T-T-T-T-C-T-T-T-G is a DNA/DNA analogue of a portion of the polypurine tract or PPT, which is a RNA/DNA hybrid that serves as a primer for synthesis of the (+) DNA strand by HIV reverse transcriptase (RT), and which is not digested by the RNase H domain of reverse transcriptase following (−) strand synthesis. The same unusual conformation that eludes RNase H, thought to be a change in width of minor groove, may also be responsible for the inhibition of HIV RT by minor groove binding drugs such as distamycin and their bis-linked derivatives. The present X-ray crystal structure of this DNA decamer exhibits the usual properties of A-tract B-DNA under biologically relevant conditions: large propeller twist of base-pairs, narrowed minor groove, and a straight helix axis. Groove narrowing is fully developed in the A-A-A-A region, but not in the A-A-A region, which previous investigators have proposed as being too short to exhibit typical A-tract properties. The RNA/DNA hybrid produced by HIV reverse transcriptase during (−) strand synthesis presumably forms a “heteromerous” or H-helix with narrower minor groove than an A-helical RNA/RNA duplex. If the narrowing of minor groove in A-tract H-helices is comparable to that seen in A-tract B-helices, then the narrowed minor groove of the polypurine tract could make the second primer site both (1) impervious to RNase H digestion, and (2) susceptible to inhibition by minor groove binding drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.