Abstract

Bacterial promoters consist of core sequence motifs termed -35 and -10 boxes. The consensus motifs are TTGACA and TATAAT, respectively, which were identified from leading investigations on Escherichia coli However, the consensus sequences are not likely to fit genetically divergent bacteria. The sigma factor of the genus Bifidobacterium has a characteristic polar domain in the N terminus, suggesting the possibility of specific promoter recognition. We reevaluated the structure of Bifidobacterium longum NCC2705 promoters and compared them to other bacteria. Transcriptional start sites (TSSs) of the B. longum NCC2705 strain were identified using transcriptome sequencing (RNA-Seq) analysis to extract promoter regions. Conserved motifs of a bifidobacterial promoter were determined using regions upstream of TSSs and a hidden Markov model. As a result, consensus motifs of the -35 and -10 boxes were TTGTGC and TACAAT, respectively. To assess each base of both motifs, we constructed 37 plasmids based on pKO403-TPCTcon, including the hup promoter connected with a chloramphenicol acetyltransferase as a reporter gene. This reporter assay showed two optimal motifs of the -35 and -10 boxes, namely, TTGNNN and TANNNT, respectively. We further analyzed spacer lengths between the -35 and -10 boxes via a bioinformatics approach. The spacer lengths predominant in bacteria have been generally reported to be approximately 17 bp. In contrast, the predominant spacer lengths in the genus Bifidobacterium and related species were 11 bp, in addition to 17 bp. A reporter assay to assess the spacer lengths indicated that the 11-bp spacer length produced unusually high activity.IMPORTANCE The structures of sigma factors vary among bacterial strains, indicating that recognition rules may also vary. Therefore, we investigated the promoter structure of Bifidobacterium longum NCC2705 using a bioinformatics approach and wet analyses. The most frequent and optimal motifs were similar to other bacterial consensus motifs. The optimal spacer length between the two boxes was reported to be 17 bp. It is widely applied to a bioinformatics approach for other bacteria. Unexpectedly, conserved spacer lengths were 11 bp as well as 17 bp in the genus Bifidobacterium Moreover, the sigma factor of the genus Bifidobacterium has a characteristic domain in the N terminus which may contribute to the additional functions. Hence, it would be valuable to reevaluate the promoter in other organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.