Abstract

The structure of A-C type intervariant interface in nonmodulated martensite in the Ni54Mn25Ga21 alloy was studied using high resolution transmission electron microscopy. The A-C interface is between the martensitic variants A and C, each of which has a nanoscale substructure of twin-related lamellae. According to their different thicknesses, the nanoscale lamellae in each variant can be classified into major and minor lamellae. It is the boundaries between these lamellae in different variants that constitute the A-C interface, which is thus composed of major-major, minor-minor, and major-minor lamellar boundaries. The volume fraction of the minor lamellae, λ, plays an important role in the structure of A-C interfaces. For major-major and minor-minor lamellar boundaries, they are symmetrical or asymmetrical tilt boundaries; for major-minor boundary, as λ increases, it changes from a symmetrical tilt boundary to two asymmetrical microfacets. Moreover, both lattice and misfit dislocations were observed in the A-C interfaces. On the basis of experimental observations and dislocation theory, we explain how different morphologies of the A-C interface are formed and describe the formation process of the A-C interfaces from λ ≈ 0 to λ ≈ 0.5 in terms of dislocation-boundary interaction, and we infer that low density of interfacial dislocations would lead to high mobility of the A-C interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call