Abstract

Graphene quantum dots (GQDs) have received much research attention due to their unique optical/electrical/magnetic features. However, the intrinsic relationship between the structure and properties of GQDs remains not fully understood, because the controlled synthesis and the accurate structure determination of GQDs are still a great challenge. Here, single-layered GQDs are successfully obtained by the hydrothermal treatment of intercalated citrate in the confined space of 2D interlayer galleries of layered double hydroxides (LDHs). The distinct molecular structures of the single-layered GQDs reveal that the blue photoluminescence of the GQDs derives from a rigid π-conjugate plane structure, which is in accordance with theoretical calculations. This work will open the door towards a quantitative understanding of the structure-property effects of GQDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.