Abstract
The work is devoted to development of cost-efficient method of processing of metallurgical waste – oily rolling scale formed during hot-rolled steel strip mechanical cleaning in descaling mills. The most significant parameters of chemical metallurgical process for producing expensive and highly marketed products – α-Fe 2 O 3 and γ-Fe 2 O 3 nanopowders – have been experimentally determined. The properties of initial materials and nanodispersed products were studied by X-ray diffractometry, energy dispersive spectroscopy, scanning and transmission microscopy, and Mossbauer spectrometry. Temperature and field dependences of powders magnetization were built according to vibration magnetometer measurements. It is shown that rolling scale consists of three main phases: wustite, magnetite and hematite in a ratio of 6:8:7 by weight, respectively. The initial scale was activated in magnetic mill in stream of hydrogen and dissolved in mixture of hydrochloric and nitric acids. The resulting solutions were used to obtain α-Fe 2 O 3 nanocrystalline hematite by chemical-metallurgical method, the main stages of which were hydroxide precipitation with alkali at constant p H , washing, drying, and dehydration. γ-Fe 2 O 3 maghemite was obtained from hematite in two stages. At the first stage, hydrogen reduction was carried out, and at the second stage, the magnetite obtained was oxidized in air. Particles of synthesized nanodispersed oxide powders are in aggregated state. Particles of α-Fe 2 O 3 are spherical, and γ-Fe 2 O 3 are rod-shaped. According to Mossbauer spectroscopy, the lattices of both oxides contain magnesium, aluminum, silicon, chromium, and manganese that have passed from the initial scale. These elements determine magnetic properties of α-Fe 2 O 3 and γ-Fe 2 O 3 nanopowders. Set of properties of nanodispersed hematite and maghemite powders obtained from metallurgical waste (rolling scale) allows us to recommend their application as catalysts, in industrial wastewater heavy metal ions treatment systems, and in production of blood analysis markers.
Highlights
The work is devoted to development of cost-efficient method of processing of metallurgical waste – oily rolling scale formed during hot-rolled steel strip mechanical cleaning in descaling mills
The properties of initial materials and nanodispersed products were studied by X-ray diffractometry, energy dispersive spectroscopy, scanning and transmission microscopy, and Mössbauer spectrometry
It is shown that rolling scale consists of three main phases: wustite, magnetite and hematite in a ratio of 6:8:7 by weight, respectively
Summary
Этапы и условия получения НП гематита и маггемита из прокатной окалины представлены на рис. 1. Для интенсификации процесса растворения применяли предварительную активацию исходной окалины в токе водорода с помощью магнитной мельницы марки УАП-3 (Россия), в которой был смонтирован нагревательный модуль с проточным реактором из нержавеющей стали Окалину обрабатывали при температуре 500 °C в течение 15 мин. Осаждение гидроксида железа проводили в автоматическом лабораторном реакторе для получения нанодисперсных материалов из растворов NANOCHEM. Сушку осадков проводили в сушильном шкафу при температуре 80 °C в течение 8 ч. Нанопорошки α-Fe2O3 были получены путем прокаливания полученного α-FeOOH на воздухе при температуре 200 °C в течение 2 ч в муфельной печи SNOL 3/12. На первой стадии получали Fe3O4 в токе водорода при температуре 375 °C в трубчатой печи с кварцевым реактором Nabertherm RSR 120/750/11. На второй стадии проводили окисление магнетита до маггемита на воздухе при температуре 300 °C в течение 1 ч в муфельной печи SNOL 3/12. Измерение магнитных свойств проводили с помощью вибрационного магнитометра LakeShore Cryotronics VSM 7400 (США), погрешность определения магнитного момента 10–6 A·м2
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.