Abstract

Molecular dynamics simulations with many-body polarizable force fields were carried out to investigate the thermodynamic, structural, and dynamic properties of aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The radial distribution functions exhibit well-defined features, revealing favored structural correlations between [bmim]+, [BF4]-, and H2O. The addition of water is shown to alter ionic liquid structural organizations by replacing counterions in the coordination shells and disrupt the cation-anion network. At low water concentration, the majority of water molecules are isolated from each other and have lower average dipole moment than that in pure water. With increasing hydration level, while [bmim][BF4] ionic network breaks up and becomes isolated ion pairs or free ions in the dilute limit, water begins to form clusters of increasing sizes and eventually forms a percolating network. As a result, the average water dipole moment increases and approaches its bulk value. Water is also observed to have a substantial influence on the dynamics of ionic liquids. At low water content, the cation and anion have similar diffusion coefficients due to the correlated ionic motion of long-lived ion pairs. As the water concentration increases, both ions exhibit greater mobility and faster rotations from the breakup of ionic network. Consequently, the ionic conductivity of [bmim][BF4] aqueous solutions rises with increasing water composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call