Abstract

Effects of untreated and pretreated carbon nanofibers (CNFs) on the crystallization behavior, friction behavior, and mechanical properties of ultra high molecular weight polyethylene (UHMWPE)/high density polyethylene (HDPE) nanocomposites prepared by a twin-screw extrusion were studied. The differential scanning calorimetry and wide angle X-ray diffraction measurements indicated that the addition of CNFs impacted the temperature of crystallization, but had no significant effects on the crystalline structure of the UHMWPE/HDPE blend. The degree of crystallinity, and the tensile strength and modulus of the UHMWPE/HDPE systems exhibited an increasing trend initially with addition of CNFs, followed by a decrease at higher contents. With the increase of untreated CNF content, the friction coefficient of UHMWPE/HDPE was decreasing and displayed less change in the process of friction. The microstructure features on the fracture surfaces and friction surfaces of the polymer blend and the nanocomposites were analyzed in detail by scanning electron microscope observations. The degree of crystallinity of the nanocomposites with the pretreated CNFs exhibited a decrease due to the better interface adhesion compared to that in the nanocomposites with the same loading untreated CNFs. The enhancement in tensile strength of nanocomposites containing 0.5 wt% treated CNFs was four times higher (32%) than that of the nanocomposites containing untreated CNFs (8%) over that of the pure polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.