Abstract

A new triangular lattice compound Gd3Cu9(OH)19Br8 has been synthesized by the hydrothermal method. The structure, magnetism and magnetocaloric effect of Gd3Cu9(OH)19Br8 have been studied by X-ray diffraction, magnetic susceptibility, isothermal magnetization and specific heat measurements. In Gd3Cu9(OH)19Br8, the Cu2+ ions form a Kagome lattice along the ab plane, and Gd3+ ions are located in the center of hexagonal holes of the Kagome layer. The Cu-sublattice and Gd-sublattice overlap and constitute a magnetic triangular lattice. The temperature dependence of susceptibility and specific heat curves indicate no magnetic transition down to 2 K, suggesting a paramagnetic-like behavior at low temperature. The magnetocaloric effect (MCE) at low temperature has been calculated according to Maxwell's equations. The maximum value of magnetic entropy change −ΔSM is 26.04 J kg−1 K−1 and adiabatic temperature change ΔTad is 13.79 K, for a field change of 0–7 T, indicating a potential application of this compound in the field of magnetic refrigeration at low temperature. The influence of 4f–3d interaction on magnetism and MCE is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call