Abstract

Here, we obtained a series of controllable thermal expansion alloys Tb1-xErxCo2Mny (x = 0-0.5, y = 0-0.4) by incorporating double rare earth doping and introducing non-stoichiometric Mn content. By varying the amount of Er or Mn, a low thermal expansion (LTE) is achieved in Tb0.6Er0.4Co2Mn0.1 (TECM, α1 = 1.23 × 10-6 K-1, 125~236 K). The macroscopic linear expansion and magnetic properties reveal that anomalous thermal expansion is closely related to the magnetic phase transition. Synchrotron X-ray powder diffraction results show that TECM is a cubic phase (space group: Fd-3m) at high temperatures, and a structural transition to a rhombohedral phase (space group: R-3m) occurs as temperature decreases. The negative thermal expansion c-axis compensates for the normal positive thermal expansion of the basal plane, resulting in the volumetric LTE. This study provides a new metallic and magnetic ZTE material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.