Abstract
We study CoxCryOm+ (x+y=2, 3 and 1≤m≤4) clusters by means of density-functional-theory calculations. It is found that the clusters grow preferentially through maximizing the number of metal–oxygen bonds with a favor on Cr sites. The size- and composition-dependent magnetic behavior is discussed in relation with the local atomic magnetic moments. While doped species show an oscillatory magnetic behavior, the total magnetic moment of pure cobalt and chromium oxide clusters tends to enhance or reduce as increasing the oxygen content, respectively. The dissociation energies for different evaporation channels are also calculated to suggest the stable patterns, as fingerprints for future photofragmentation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.