Abstract

A series of Zn1−xMgxO nanoparticles with x=0 to 0.15 were prepared by auto combustion method using citric acid as the fuel and chelating agent. Structure, luminescence and photocatalytic properties were systematically investigated by means of X-ray diffraction, scanning electron microscopy, photoluminescence spectra, ultraviolet–visible absorbance measurement and photochemical reactions etc. The samples retained hexagonal wurtzite structure of ZnO and single phase below x=0.13, and the sizes of the nanoparticles were 60–70nm. The photoluminescence spectroscopy demonstrated blue shift of ultraviolet emission with increasing Mg doping concentration. Both optical measurements of the as grown and Mg doped ZnO nanoparticles showed that the optical band gap could be modified from ~3.28eV to 3.56eV as the Mg content x increased from 0 to 0.13. The photocatalytic activities of the samples were evaluated by photocatalytic degradation of methyl orange, and the results showed that the doping of Mg into ZnO nanoparticles could enhance photocatalytic activity compared to the undoped ZnO nanoparticles, which was attributed to increased band gap and superior textural properties. In addition, according to the PL and photocatalytic studies, the critical doping content of effective Mg in ZnO is up to 0.09.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.