Abstract

Recently, metal sulfides have begun to receive attention as potential cost-effective materials for thermoelectric applications beyond optoelectronic and photovoltaic devices. Herein, based on a comparative analysis of the structural and transport properties of 2D PbSnS2 and 1D PbSnS3, we demonstrate that the intrinsic effects that govern the low lattice thermal conductivity (κL) of these sulfides originate from the combination of the low dimensionality of their crystal structures with the stereochemical activity of the lone-pair electrons of cations. The presence of weak bonds in these materials, responsible for phonon scattering, results in inherently low κL of 1.0 W/m K in 1D PbSnS3 and 0.6 W/m K in 2D PbSnS2 at room temperature. However, the nature of the thermal transport is quite distinct. 1D PbSnS3 exhibits a higher thermal conductivity with a crystalline-like peak at low temperatures, while 2D PbSnS2 demonstrates glassy thermal conductivity in the entire temperature range investigated. First-principles density functional theory calculations reveal that the presence of antibonding states below the Fermi level, especially in PbSnS2, contributes to the very low κL. In addition, the calculated phonon dispersions exhibit very soft acoustic phonon branches that give rise to soft lattices and very low speeds of sounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.