Abstract
Nowadays, signed network has become an important research topic because it can reflect more complex relationships in reality than traditional network, especially in social networks. However, most signed network methods that achieve excellent performance through structure information learning always neglect neutral links, which have unique information in social networks. At the same time, previous approach for neutral links cannot utilize the graph structure information, which has been proved to be useful in node embedding field. Thus, in this paper, we proposed the Signed Graph Convolutional Network with Neutral Links (NL-SGCN) to address the structure information learning problem of neutral links in signed network, which shed new insight on signed network embedding. In NL-SGCN, we learn two representations for each node in each layer from both inner character and outward attitude aspects and propagate their information by balance theory. Among these three types of links, information of neutral links will be limited propagated by the learned coefficient matrix. To verify the performance of the proposed model, we choose several classical datasets in this field to perform empirical experiment. The experimental result shows that NL-SGCN significantly outperforms the existing state-of-the-art baseline methods for link prediction in signed network with neutral links, which supports the efficacy of structure information learning in neutral links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.