Abstract

Somapacitan is a growth hormone derivative approved for once-weekly treatment of growth hormone deficiency in adults and currently in clinical development for once-weekly dosing in children. The purpose of this study was to obtain non-clinical data from rats to support the safety evaluation of the most abundant metabolites of somapacitan in humans. The aims were to identify somapacitan metabolites and their relative proportions in rat plasma, identify the structure of abundant metabolites and measure the systemic metabolite exposure at the no-observed-adverse-effect level in the rat.After a single dose of radiolabelled somapacitan and analysis by high-performance liquid chromatography with radiochemical detection, seven somapacitan-related metabolites were detected in plasma from male rats, of which six were seen in plasma from female rats. The three most abundant metabolites (M1, M2 and M3) were structurally identified from liquid chromatography and mass spectrometry data, and a fourth metabolite (P1) was characterised from its specific retention time (lacking retention to the stationary phase) in plasma analysis with reversed-phase liquid chromatography and radiochemical detection.The metabolites were products from proteolysis of the peptide backbone in somapacitan. A deamidation product of the M1 metabolite (M1B) was also identified. Following multiple, twice-weekly dosing for 4 weeks, somapacitan was the principal plasma component up to 36 h after dosing. After 36 h, metabolites M1+M1B were the most abundant plasma components. Pharmacokinetic models were developed for somapacitan and metabolite P1 and used for steady-state assessment in the rat.Comparison of our data generated from rats with data from the parallel human study demonstrated that the most abundant metabolites were present in rats at higher levels than in humans. This study has provided non-clinical safety data that contribute to an overall safety assessment of somapacitan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.