Abstract
Structure models have been developed for the liquid crystalline polymers (LCPs), showing the existence of fibrillar hierarchies for both the lyotropic aramids and the thermotropic aromatic copolyesters. Hierarchies of structure have also been observed for biological materials. The nature of the smallest nanostructure that aggregates, typically microfibrils, and their interaction, are important in understanding the behavior of the material. This paper discusses the first application of scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM) to image the microfibrils in LCPs, in the 1-10 nm size range, resulting in a new LCP structural model.The structure model proposed earlier, was based on the study of Vectra® thermotropic LCP moldings and extrudates, and Vectran® and Kevlar® fibers. The model resulted from characterization by light microscopy, and transmission and scanning electron microscopy. Recent studies of similar fibers by STM and low voltage FESEM has provided additional insights. Details of single microfibrils and their aggregation into fibrils and macrofibrils was shown.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.