Abstract

Drug resistance is a major challenge in conventional endocrine therapy for estrogen receptor (ER) positive breast cancer (BC). BC is a multifactorial disease, in which simultaneous aromatase (ARO) inhibition and ERα degradation may effectively inhibit the signal transduction of both proteins, thus potentially overcoming drug resistance caused by overexpression or mutation of target proteins. In this study, guided by the X-ray structure of a hit compound 30a in complex with ER-Y537S, a structure-based optimization was performed to get a series of multiacting inhibitors targeting both ERα and ARO, and finally a novel class of potent selective estrogen receptor degraders (SERDs) based on a three-dimensional oxabicycloheptene sulfonamide (OBHSA) scaffold equipped with aromatase inhibitor (AI) activity were identified. Of these dual-targeting SERD-AI hybrids, compound 31q incorporating a 1H-1,2,4-triazole moiety showed excellent ERα degradation activity, ARO inhibitory activity and remarkable antiproliferative activity against BC resistant cells. Furthermore, 31q manifested efficient tumor suppression in MCF-7 tumor xenograft models. Taken together, our study reported for the first time the highly efficient dual-targeting SERD-AI hybrid compounds, which may lay the foundation of translational research for improved treatment of endocrine-resistant BC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.