Abstract
Inhibition of ubiquitin-specific protease 7, USP7, has been proposed as a mechanism to affect many disease processes, primarily those implicated in oncology. The bound crystal structure of a published high-throughput screening hit with low-micromolar affinity for USP7 identified three regions of the compound for structure-guided optimization. Replacing one side of the compound with different aromatic moieties gave little improvement in affinity, and the central piperidine could not be improved. However, the binding site for the other side of the compound was poorly defined in the crystal structure, which suggested a wide variety of synthetically accessible options for optimization. These were assessed by screening reaction mixtures that introduced different substituents to this other side. Subsequent optimization led to a compound with low-nanomolar affinity for USP7, which showed target engagement in tumors, was tolerated in mice, and showed efficacy in xenograft models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.