Abstract

Protein-protein interactions are attractive targets because they control numerous cellular processes. In oncology, apoptosis regulating Bcl-2 family proteins are of particular interest. Apoptotic cell death is controlled via PPIs between the anti-apoptotic proteins hydrophobic groove and the pro-apoptotic proteins BH3 domain. In ovarian carcinoma, it has been previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect tumor cells against apoptosis. Moreover, Mcl-1 is a key regulator of cancer cell survival and is a known resistance factor to Bcl-2/Bcl-xL pharmacological inhibitors making it an attractive therapeutic target. Here, using a structure-guided design from the oligopyridine lead Pyridoclax based on Noxa/Mcl-1 interaction we identified a new derivative, active at lower concentration as compared to Pyridoclax. This new derivative selectively binds to the Mcl-1 hydrophobic groove and releases Bak and Bim from Mcl-1 to induce cell death and sensitize cancer cells to Bcl-2/Bcl-xL targeting strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.