Abstract

In view of the difficulty in accurately recognizing vehicle models due to the wide variety of vehicle models and little differentiation between some models, a structure-guided attention network for weakly supervised learning fine-grained vehicle model recognition is proposed. First, we utilize the structure-guided attention location module to locate key features of images, extracting the strong and weak attention areas of the image by generating attention maps. Second, we investigate multichannel convolutional neural network for the learning of the strong-weak feature pairs and solve the problem of different network feature maps with different sizes by using feature map alignment. Third, an adaptive weighting method is proposed to balance the loss function. The experimental results show that our algorithm effectively improves the accuracy of the fine-grained vehicle recognition dataset and has universal applicability in other fine-grained recognition datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.