Abstract
Spatial occurrence, structural architecture and formation of brittle fault zones and joints are investigated by outcrop observations, scanline mapping, and light- and scanning electron microscopy in an anisotropic crystalline rock mass (e.g. granites, para-gneisses and schists) of the central Gotthard massif in the Swiss Alps. The analysis presented illustrates that several pre-fault anisotropic features (i.e. dykes, ductile shear zones, foliation and presumably a pre-existing meso-scale fracture set) control the nucleation and propagation of brittle faults. Three sets of brittle fault zones striking NE-SW, NNE-SSW and WNWESE can be distinguished. They formed through cataclasis at temperatures below 300°C, and were activated predominately in a strike-slip regime. Up to five joint sets were mapped and characterized according to orientation, frequency, spacing and formation. Finally a regional fan structure was established in the Gotthard Pass area, encompassing the main foliation, steeply dipping joints and brittle fault zones, each of which shows the same orientation and location of the symmetry plane (NE-SW orientated).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.