Abstract

How and at which thermal conditions the convergence between the Chinese Altai and East Junggar operated remain poorly understood. This issue is addressed in the current study by focusing on the timing and petrogenesis of syntectonic granite dykes from the representative areas of Fuyun (convergent front) and Kalasu-Aletai (Chinese Altai interior). It is shown that Fuyun and Kalasu-Aletai dykes are fractionated I- and S-type granites, with zircon and monazite U-Pb ages of 300−291 Ma and 281−265 Ma, respectively. Geochemically, the Fuyun dykes have lower contents of aluminous (ASI: 0.97−1.13) and light rare earth element-enriched features, while the Kalasu-Aletai dykes have ASI = 1.01−2.17 and show overall flat rare earth element patterns with tetrad effects. The Fuyun dykes exhibit less evolved Sr-Nd isotopic characteristics (87Sr/86Srinitial: 0.7039−0.7048, εNd(t): + 5.7 to + 6.1) with respect to those of the Kalasu-Aletai dykes (87Sr/86Srinitial: 0.6978−0.7183, εNd(t): −7.6 to +3.0). The Fuyun and Kalasu-Aletai dykes are geochemically compatible with isotopically less evolved East Junggar arc components and heterogeneous Ordovician wedge sediment of the Chinese Altai, respectively, implying genetic links. We propose that the late Paleozoic Chinese Altai−Junggar convergence created a local perturbation of weak mantle beneath the southern Chinese Altai, causing partial melting of the underthrusting East Junggar and the overriding Altai components successively. The resulting magmas were emplaced along northward propagating syn-tectonic tensional fractures perpendicular to the Chinese Altai−East Junggar deformation front that serves as an excellent indicator of the convergent-shortening process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call