Abstract
Parasitic lice have unique mitochondrial (mt) genomes characterized by rearranged gene orders, variable genome structures, and less AT content compared to most other insects. However, relatively little is known about the mt genomes of Amblycera, the suborder sister to all other parasitic lice. Comparing among nine different genera (including representative of all seven families), we show that Amblycera have variable and highly rearranged mt genomes. Some genera have fragmented genomes that vary considerably in length, whereas others have a single mt chromosome. Notably, these genomes are more AT-biased than most other lice. We also recover genus-level phylogenetic relationships among Amblycera that are consistent with those reported from large nuclear datasets, indicating that mt sequences are reliable for reconstructing evolutionary relationships in Amblycera. However, gene order data cannot reliably recover these same relationships. Overall, our results suggest that the mt genomes of lice, already know to be distinctive, are even more variable than previously thought.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.