Abstract

A continuum structure function (CSF) y is a non-decreasing mapping from the unit hypercube to the unit interval. Define whereas γ (γ) < α for all y < x}, the set of minimal vectors to level α. This paper examines CSFs for which each Pα is finite. It is shown that if γ is such a CSF and X is a vector of independent random variables, the distribution of γ (X) is readily calculated. Further, if γ is an arbitrary right-continuous CSF, the distribution of γ (X) may be approximated arbitrarily closely by that of γ′(X) where γ′ is a right-continuous CSF for which each minimal vector set is finite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.