Abstract
A synthetic heptad repeat, SV-473, derived from Sendai virus fusion protein is a potent inhibitor of virus-cell fusion. In order to understand the mechanism of the inhibitory effect, we synthesized and fluorescently labeled SV-465, an extended version of SV-473 by one more heptad, its mutant peptide A17,24-SV-465, in which two heptadic leucines were substituted with two alanines, and its enatiomer D-SV-465, composed entirely of Damino acids. Similar mutations in the homologous fusion protein of the Newcastle disease virus drastically reduced its activity. The data revealed that SV-465, but not A17,24-SV-465 or its enantiomer, is highly active in inhibiting Sendai virus-induced hemolysis of red blood cells. None of the peptides interfere with the binding of virions to the target red blood cells as demonstrated by hemagglutinin assay. Fluorescence and circular dichroism (CD) spectroscopy indicated that: (i) only SV-465 could self-assemble in aqueous environment; (ii) only SV-465 could co-assemble with two other biologically active heptad repeats derived from Sendai virus fusion protein; (iii) SV-465 has a higher helical content than A17,24-SV-465 in solution, and (iv) all the peptides bind strongly to zwitterionic and negatively charged phospholipids. Polarized attenuated total reflection infrared spectroscopy revealed that they bound as monomers onto the surface of zwitterionic membranes with predominantly alpha-helical structures. The functional role of the amino acid 465-497 domain in Sendai virus-mediated membrane fusion is discussed in light of these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.