Abstract

Cadmium, mercury, and lead pollute many industrial sites, such as refineries and natural gas plants, and are persistent bioaccumulative toxic compounds associated with a range of human health problems, including effects on the nervous system, reproductive and developmental problems, and carcinogenic effects. Understanding the enzymes involved in the biosynthesis of metal chelating peptides is essential for using plants as tools in the remediation of toxic metal contaminated soils and waters. In response to heavy metal toxicity, plants synthesize metal-chelating peptides (i.e., phytochelatins) derived from glutathione and related molecules as protection. Glutathione is found in mammals, plants, and bacteria and is synthesized by glutathione synthetase (GS), an ATP-dependent peptide ligase. Interestingly, some plants respond to heavy metal stress by synthesizing glutathione analogs in which β-alanine, serine, or glutamic acid replace glycine in the peptide. The specific aims of the proposal are as follows: (1) to determine the structural basis for the synthesis of glutathione analogs; (2) to probe the functional role of the substrate interaction loop; and (3) to diversify substrate specificity. During the third year of this project, we have determined the 1.9-2.1 A resolution x-ray crystal structure of GmhGS in three forms: 1) apoenzyme/’open’ active site, 2) the ‘open’ form in complex with γ-glutamylcysteine, and 3) a ‘closed’ active site form in

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.