Abstract

Autoantibodies are pathogenic in systemic lupus erythematosus (SLE) and the antiphospholipid syndrome (APS). These pathogenic autoantibodies are generally characterized by IgG isotype and high affinity binding to particular antigens. In SLE, antibodies to double-stranded DNA (dsDNA), nucleosomes and alpha-actinin are particularly important. In APS, pathogenic antibodies that cause thrombosis or fetal loss are particularly characterized by binding to anionic phospholipids (PL) and beta-2-glycoprotein I. Sequence analysis of human and murine monoclonal anti-dsDNA and aPL antibodies shows that high affinity for these antigens is associated with the presence of the residues arginine (Arg), asparagine (Asn) and lysine (Lys) in the complementarity determining regions (CDRs) of their heavy and light chains. In vitro expression systems have been used to create variants of the antibodies in which these amino acids have been altered. In general, removal of arginine residues reduces affinity for dsDNA, nucleosomes and anionic PL. Arginines at different positions in the sequence have different effects on binding affinity and effects on binding are not always mirrored by effects on pathogenicity. These studies, together with molecular models of antigen/antibody complexes, help us to understand exactly how pathogenic antibodies interact with antigens. Ultimately, this understanding may aid the design of therapeutic agents to block the pathogenic effects of these antibodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.