Abstract

3α-Hydroxysteroid dehydrogenases (3α-HSDs) inactivate steroid hormones in the liver, regulate 5α-dihydrotestosterone (5α-DHT) levels in the prostate, and form the neurosteroid, allopregnanolone in the CNS. Four human 3α-HSD isoforms exist and correspond to AKR1C1–AKR1C4 of the aldo-keto reductase (AKR) superfamily. Unlike the related rat 3α-HSD (AKR1C9) which is positional and stereospecific, the human enzymes display varying ratios of 3-, 17-, and 20-ketosteroid reductase activity as well as 3α-, 17β-, and 20α-hydroxysteroid oxidase activity. Their k cat values are 50–100-fold lower than that observed for AKR1C9. Based on their product profiles and discrete tissue localization, the human enzymes may regulate the levels of active androgens, estrogens, and progestins in target tissues. The X-ray crystal structures of AKR1C9 and AKR1C2 (human type 3 3α-HSD, bile acid binding protein and peripheral 3α-HSD) reveal that the AKR1C2 structure can bind steroids backwards (D-ring in the A-ring position) and upside down (β-face inverted) relative to the position of a 3-ketosteroid in AKR1C9 and this may account for its functional plasticity. Stopped-flow studies on both enzymes indicate that the conformational changes associated with binding cofactor (the first ligand) are slow; they are similar in both enzymes but are not rate-determining. Instead the low k cat seen in AKR1C2 (50-fold less than AKR1C9) may be due to substrate “wobble” at the plastic active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.