Abstract
High affinity receptors for interleukin 2 (IL 2) contain the Tac protein as one ligand-binding subunit. Localization of the IL 2-binding site on this molecule, as well as localization of the complementary site on IL 2, should provide insight into the design of IL 2 analogs. In this report, we examine the ability of normal and modified Tac protein to bind IL 2 and several antibodies that recognize the native Tac molecule. Using a transient L cell expression system, we have determined that transfection with cDNA-missing Tac exon 4 resulted in expression of spliced protein that had no measurable binding to IL 2 or the monoclonal anti-receptor antibodies, anti-Tac, and 7G7/B6. This protein was detected, however, by rabbit polyclonal antibodies prepared against synthetic Tac peptides. Thus, one or more amino acids encoded by exon 4 is important, either for direct ligand contact or for the proper folding of critical segments of the Tac molecule. In addition, insertion of stop codons at a unique restriction enzyme site near the beginning of exon 5 resulted in cellular secretion of truncated Tac molecules that were capable of binding IL 2, anti-Tac, and 7G7/B6. Amino acids encoded by exons 5 to 8 thus play no critical role in IL 2 binding. The ligand association demonstrated for truncated Tac protein produced by exons 2 to 4 should guide attempts to define the IL 2-binding segment of the Tac molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.