Abstract

The isoenzymes of the 3β-hydroxysteroid dehydrogenase/5-ene-4-ene-isomerase (3β-HSD) gene family catalyse the transformation of all 5-ene-3β-hydroxysteroids into the corresponding 4-ene-3-keto-steroids and are responsible for the interconversion of 3β-hydroxy- and 3-keto-5α-androstane steroids. The two human 3β-HSD genes and the three related pseudogenes are located on the chromosome 1p13.1 region, close to the centromeric marker D1Z5. The 3β-HSD isoenzymes prefer NAD + to NADP + as cofactor with the exception of the rat liver type III and mouse kidney type IV, which both prefer NADPH as cofactor for their specific 3-ketosteroid reductase activity due to the presence of Tyr 36 in the rat type III and of Phe 36 in mouse type IV enzymes instead of Asp 36 found in other 3β-HSD isoenzymes. The rat types I and IV, bovine and guinea pig 3β-HSD proteins possess an intrinsic 17β-HSD activity psecific to 5α-androstane 17β-ol steroids, thus suggesting that such “secondary” activity is specifically responsible for controlling the bioavailability of the active androgen DHT. To elucidate the molecular basis of classical form of 3β-HSD deficiency, the structures of the types I and II 3β-HSD genes in 12 male pseudohermaphrodite 3β-HSD deficient patients as well as in four female patients were analyzed. The 14 different point mutations characterized were all detected in the type II 3β-HSD gene, which is the gene predominantly expressed in the adrenals and gonads, while no mutation was detected in the type I 3β-HSD gene predominantly expressed in the placenta and peripheral tissues. The mutant type II 3β-HSD enzymes carrying mutations detected in patients affected by the salt-losing form exhibit no detectable activity in intact transfected cells, at the exception of L108W and P186L proteins, which have some residual activity (∼1%). Mutations found in nonsalt-loser patients have some residual activity ranging from ∼1 to ∼10% compared to the wild-type enzyme. Characterization of mutant proteins provides unique information on the structure-function relationships of the 3β-HSD superfamily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.