Abstract

In estrogen-receptor-positive human breast cancer cell lines (MCF7, ZR75-1), estrogens specifically increase the secretion into the culture medium of a 52,000 Da (52K) glycoprotein and stimulate cell proliferation. The 52K protein has been purified to homogeneity using monoclonal antibodies and identified as the secreted precursor of a cathepsin D bearing mannose-6-phosphate signals. The secreted precursor 52K protein is mitogenic in vitro in estrogen-deprived MCF7 cells, can be taken up by these cells via mannose-6-phosphate receptors, and can degrade extracellular matrix and proteoglycans glycans following its auto-activation. The protease is also produced constitutively by ER-negative cell lines, and is inducible by tamoxifen in some antiestrogen-resistant variants. The corresponding cDNA has been cloned using N-terminal sequencing of the protein and monoclonal antibodies. Its complete sequencing indicates a strong homology with pro-cathepsin D of normal tissues. Using a cDNA probe, the regulation of 52K cathepsin D mRNA by estrogens and antiestrogens has been studied and chromosome localization determined by in situ hybridization. Clinical studies using both immunohistochemistry and immunoenzymatic assay of breast cancer cytosol have shown that the concentration of total cellular cathepsin D (52K + 48K + 34K) is related to the proliferation of mammary ducts and to the prognosis of breast cancer. Its cytosolic concentration in primary tumors of postmenopausal patients is correlated slightly with lymph node invasion and significantly with shorter disease-free intervals in a 6-year retrospective study with the Danish Breast Cancer Groups and Finsen Institute (S. Thorpe et al.). We propose that in addition to estrogen-induced growth factors and other proteases such as plasminogen activator and collagenases, pro-cathepsin D may play an important role in the growth and invasiveness of hormone-dependent and independent breast cancers. Moreover, this lysosomal protease appears to be useful as a tissue marker for predicting high-risk mastopathies and invasive breast cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.