Abstract

We have employed a new pseudosubstrate, beta-(2-furyl)propionyl coenzyme A (FPCoA), to study the functional properties of two enzymes, fatty acyl-CoA dehydrogenase from porcine liver and fatty acyl-CoA oxidase from Candida tropicalis, involved in the oxidation of fatty acids. Previous studies from our laboratory have shown that the dehydrogenase exhibits oxidase activity at the rate of dissociation of the product charge-transfer complex. This raises the question of the difference in functionality between these two flavoproteins. To investigate these differences, we have compared the pH dependence of product formation, the isotope effects using tetradeuterio-FPCoA, and the spectral properties and chemical reactivity of the product charge-transfer complexes formed with the two enzymes. The pH dependencies of the reaction of FPCoA with electron-transfer flavoprotein (ETF) for the dehydrogenase and of the reaction of FPCoA with O2 for the oxidase are quite similar. Both reactions proceed more rapidly at basic pH values while substrate binds more tightly at acidic pH values. These data for both enzymes are consistent with a mechanism in which enzyme is involved in protonation of the carbonyl group of substrate followed by base-catalyzed removal of the C-2 proton from substrate. The C-2 anion of substrate may then serve as the active species in reduction of enzyme-bound flavin. The deuterium isotope effects for both enzyme systems are primary across the entire pH range, assuring that the chemically important step of substrate oxidation is rate limiting in these steady-state kinetic experiments. The two enzymes differ in the chemical reactivity of their product charge-transfer complexes.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.