Abstract

The proteasome, a complex multi-catalytic protease machinery, orchestrates the protein degradation essential for maintaining cellular homeostasis, and its dysregulation also underlies many different types of diseases. Its function is regulated by many different mechanisms that encompass various factors such as proteasome activators (PAs), adaptor proteins, and post-translational modifications. This review highlights the unique characteristics of proteasomal regulation through the lens of a distinct family of regulators, the 11S, REGs, or PA26/PA28. This ATP-independent family, spanning from amoebas to mammals, exhibits a common architectural structure; yet, their cellular biology and criteria for protein degradation remain mostly elusive. We delve into their evolution and cellular biology, and contrast their structure and function comprehensively, emphasizing the unanswered questions regarding their regulatory mechanisms and broader roles in proteostasis. A deeper understanding of these processes will illuminate the roles of this regulatory family in biology and disease, thus contributing to the advancement of therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.