Abstract

The DnaK, DnaJ, and GrpE proteins of Escherichia coli have been universally conserved across the biological kingdoms and work together to constitute a highly efficient molecular chaperone machine. We have examined the extent of functional conservation of Saccharomyces cerevisiae Ssc1p, Mdj1p, and Mge1p by analyzing their ability to substitute for their corresponding E. coli homologs in vivo. We found that the expression of yeast Mge1p, the GrpE homolog, allowed for the deletion of the otherwise essential grpE gene of E. coli, albeit only up to 40 degrees C. The inability of Mge1p to substitute for GrpE at very high temperatures is consistent with our previous finding that it specifically failed to stimulate DnaK's ATPase at such extreme conditions. In contrast to Mge1p, overexpression of Mdj1p, the DnaJ homolog, was lethal in E. coli. This toxicity was specifically relieved by mutations which affected the putative zinc binding region of Mdj1p. Overexpression of a truncated version of Mdj1p, containing the J- and Gly/Phe-rich domains, partially substituted for DnaJ function at high temperature. A chimeric protein, consisting of the J domain of Mdj1p coupled to the rest of DnaJ, acted as a super-DnaJ protein, functioning even more efficiently than wild-type DnaJ. In contrast to the results with Mge1p and Mdj1p, both the expression and function of Ssc1p, the DnaK homolog, were severely compromised in E. coli. We were unable to demonstrate any functional complementation by Ssc1p, even when coexpressed with its Mdj1p cochaperone in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.