Abstract

Crystallochemical analysis and classification were performed for 139 ternary and quaternary complex fluorides with the general formula M1(n)M2(m)M3F(6), belonging to 33 structure types. Using coordination sequences and the uniformity criterion the structure-forming ionic sublattices or their combinations were found, which are responsible for the formation of stable periodic frameworks. Analysis of structure-forming motifs allows the interpretation of the crystal structures of complex fluorides as close packings of F ions with M1, M2 and M3 cations, partially occupying tetrahedral and octahedral voids, or as the packings of [M3F(6)] complex ions with M1 and M2 countercations in the voids. Cationic sublattices are noted to play an essential role, while forming crystal structures of complex fluorides. Relationships between the composition of structure-forming sublattices, the composition of compounds, and the size and charge of ions belonging to the sublattices were analysed under normal conditions, with thermal and high-pressure polymorphic transitions. Rules were formulated to predict the crystal structures of complex fluorides with a given chemical composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.