Abstract

The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

Highlights

  • IntroductionThe linear molecular structure of polyethyleneoxide (PEO) is very simple (see Figure 1A)

  • The linear molecular structure of polyethyleneoxide (PEO) is very simpleit offers a number of important physicochemical properties

  • In thin film preparation, dewetting is often regarded as an undesired effect

Read more

Summary

Introduction

The linear molecular structure of polyethyleneoxide (PEO) is very simple (see Figure 1A). It offers a number of important physicochemical properties. Perhaps the most important property is the ability of PEO layers to avoid non-specific protein adsorption on surfaces [1]. This behavior is generally seen as a consequence of the hydrogen bonding between ethyleneoxide (EO) segments and surrounding water molecules which induces local order at the molecular interface [2].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.