Abstract

Additive technologies are replacing the conventional methods of casting and subsequent time-consuming machining because of its high productivity. Resent engineering development in the field of additive manufacturing allows increasing assortment of useful powder materials. Technology of high-speed direct laser deposition (HSDLD) is a one of most perspective new technologies. It allows realizing heterophase process during the manufacturing, which there is process of partial melting of used powder is realized. The product is formed from a metal powder, which is supplied by compressed gas-powder jet directly into the laser action zone, wherein the jet can be as coaxial and as non-coaxial. Ni-based alloys found their application in many industrial areas, mostly there are used engine systems, aircraft and shipbuilding, aeronautics. The unique combination of operational characteristics depending on the type of alloy makes them promising materials. Heating and cooling rates during direct laser deposition determine structure and affect on its properties. Research is focused on structure and phase formation within technological process of HSDLD for Ni-base superalloys. Mechanical tests were carried out on the static tensile test, microhardness was measured. Based on research results the high-speed direct laser deposition technology could be used for manufacturing of products from different Ni-based alloys without subsequent heat treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call